Les liaisons

Les pièces de couleur **rouge** sont les pièces N°1 et les pièces de couleur **verte** sont les pièces N°2. Les liaisons sont modélisées selon la normalisation NF EN 23952

Nom de la liaison	Exemple	Représentation plane	Représentation spatiale	n_C	Torseur des petits déplacement	Torseur cinématique	Torseur transmissible	Points de réduction	n_S
Liaison encastrement	Soudure			0	$ \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{(\vec{x}, \vec{y}, \vec{x})} $		$ \begin{bmatrix} X_{12} & L_{12} \\ Y_{12} & M_{12} \\ Z_{12} & N_{12} \end{bmatrix}_{(\vec{x}, \vec{y}, \vec{z})} $	Tous les points	6
Liaison pivot d'axe $(O; \vec{x})$		\vec{y} \vec{z}	ÿ, , , , , , , , , , , , , , , , , , ,	1	$egin{pmatrix} \delta_{ heta_{x_{21}}} & 0 \ 0 & 0 \ 0 & 0 \ \end{bmatrix}_{(ar{x},ar{y},ar{z})}$	$\begin{bmatrix} \alpha_{21} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}_{(\vec{x}, \vec{y}, \vec{z})}$	$ \begin{cases} X_{12} & 0 \\ Y_{12} & M_{12} \\ Z_{12} & N_{12} \end{cases}_{(\vec{x}, \vec{y}, \vec{z})} $	$A \in (O; \vec{x})$	5
Liaison glissière d'axe $(O; \vec{x})$, , , , , , , , , , , , , , , , , , ,	\vec{y} \vec{z}	ÿ , , , , , , , , , , , , , , , , , , ,	1	$\begin{pmatrix} 0 & \delta_{x_{A_{21}}} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{(\vec{x}, \vec{y}, \vec{z})}$		$\begin{bmatrix} 0 & L_{12} \\ Y_{12} & M_{12} \\ Z_{12} & N_{12} \end{bmatrix}_{(\vec{x}, \vec{y}, \vec{z})}$	Tous les points (Torseur couple)	5
Liaison hélicoïdale d'axe $(O; \vec{x})$	7	\vec{y} \vec{z}	V V V V V V V V V V	1	$\begin{bmatrix} \delta_{\theta_{x_{21}}} & \delta_{x_{A_{21}}} \\ 0 & 0 \\ 0 & 0 \end{bmatrix}_{(\vec{x}, \vec{y}, \vec{z})}$	$ \begin{cases} \alpha_{21} & u_{21} \\ 0 & 0 \\ 0 & 0 \end{cases}_{(\vec{x}, \vec{y}, \vec{z})} $	$ \begin{cases} 0 & 0 \\ Y_{12} & M_{12} \\ Z_{12} & N_{12} \end{cases}_{(\vec{x}, \vec{y}, \vec{z})} $	$A \in (O; \vec{x})$	5
Liaison pivot glissant d'axe $(O; \vec{x})$	Ţ,	\overrightarrow{y} \overrightarrow{z} \overrightarrow{z}	ÿ, 0 ₹	2	$ \begin{pmatrix} \delta_{\theta_{x_{21}}} & \delta_{x_{A_{21}}} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{(\vec{x}, \vec{y}, \vec{z})} $			$A \in (O; \vec{x})$	4
Liaison sphérique à doigt d'axe $(O; \vec{x})$	*	\vec{y}	ŢŢ,	2	$ \begin{pmatrix} \delta_{\theta_{x_{21}}} & 0 \\ \delta_{\theta_{y_{21}}} & 0 \\ 0 & 0 \end{pmatrix}_{(\vec{x}, \vec{y}, \vec{z})} $	$\begin{bmatrix} \alpha_{21} & 0 \\ \beta_{21} & 0 \\ 0 & 0 \end{bmatrix}_{(\vec{x}, \vec{y}, \vec{z})}$	$ \begin{cases} X_{12} & 0 \\ Y_{12} & 0 \\ Z_{12} & N_{12} \end{cases}_{(\vec{x}, \vec{y}, \vec{z})} $	Point O	4

Liaison appui plan de normale (O, \bar{x}) Liaison (O, \bar{x}) Liaison appui plan de normale (O, \bar{x}) Liaison linéaire rectiligne de normale (O, \bar{x}) Liaison linéaire annulaire de centre O et d'axe (O, \bar{x}) Liaison pontre le d'axe (O, \bar{x})	Nom de la liaison	Exemple	Représentation plane	Représentation spatiale	n_C	Torseur des petits déplacement	Torseur cinématique	Torseur transmissible	Points de réduction	n_S
Liaison appui plan de normale $(O; \vec{x})$ 3 $\begin{cases} \delta_{a_{21}} & 0 \\ 0 & \delta_{y_{21}} \\ 0 & \delta_{z_{41}} \end{cases} \begin{pmatrix} \alpha_{21} & 0 \\ 0 & w_{21} \\ 0 & w_{21} \end{pmatrix}_{(\vec{x}, \vec{y}, \vec{z})} \begin{pmatrix} X_{12} & 0 \\ 0 & M_{12} \\ 0 & N_{12} \end{pmatrix}_{(\vec{x}, \vec{y}, \vec{z})}$ Tous les points Cultivation of the point O and O a	sphérique de	*	\vec{y}	\vec{v}	3	$\{o_{\theta_{v21}} 0\}$	$\left\{eta_{21} 0\right\}$	$\left\{Y_{12} 0\right\}$	Point O	3
Liaison linéaire annulaire de centre O et d'axe $(O; \vec{x})$ Liaison ponctuelle de normale $(O; \vec{x})$ Liaison ponctuelle de normale O and O	plan de normale	T O T O T O T O T O T O T O T O T O T O		\vec{z}	3	$\{0 o_{v_{4}}\}$	$\left\{0 \right\} \left\{v_{21}\right\}$	$\left\{0 \qquad M_{12}\right\}$		3
linéaire annulaire de centre O et d'axe $(O;\vec{x})$ Liaison ponctuelle de pormale	linéaire rectiligne de normale	- O	*************************************		4	$\{0 o_{v_{i}}\}$	$\left\{0 v_{21}\right\}$	$\left\{ egin{matrix} 0 & M_{12} \\ 0 & 0 \end{array} \right\}$	$A \in (O; \vec{x}, \vec{y})$	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	linéaire annulaire de centre O et	\$	\vec{y} \vec{x} \vec{z}	ÿ 0 2	4	$\{o_{\theta_{val}} \mid 0 \}$	$\left\{ eta_{21} 0 \right\}$	$\left\{ Y_{12} 0 \right\}$	Point O	2
SigaHe	ponctuelle de normale			\vec{x}	5	$\left\{egin{array}{ccc} \delta_{ heta_{y_{21}}} & \delta_{y_{A_{21}}} \\ \delta_{ heta} & \delta_{ au} \end{array} ight\}$	$\left\{eta_{21} \mid v_{21} \right\}$	$\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$		1

Les liaisons entre deux solides se définissent par la connaissance des caractéristiques générales suivantes :

- La géométrie du contact (Plan-plan, plan-cylindre, plan-sphère, cylindre-cylindre, etc.)
- La fonction mécanique de la liaison, ou l'aptitude du contact à transmettre des efforts et à permettre des mouvements relatifs (degrés de liberté).

Remarque : Les symboles des liaisons sont indépendants des solutions technologiques.